DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Regular End Semester Examination – Summer 2022

Course: B. Tech. **Branch: Computer Engineering** Semester: IV Subject Code & Name: BTCOC402 & Operating Systems Max Marks: 60 Date: 18/08/2022 Duration: 3.45 Hr. Instructions to the Students: 1. All the questions are compulsory. 2. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question. 3. Use of non-programmable scientific calculators is allowed. 4. Assume suitable data wherever necessary and mention it clearly. (Level) Marks **Q. 1** Solve Any Two of the following. (This is just a sample instruction) A) Define a virtual machine with neat diagram. Describe the concept and **(2)** 6 working of JVM. Explain what are the benefits of a VM? **B)** What is the purpose of command interpreter? Why is it usually separate **(2)** 6 from the Kernel? C) Describe major activities of an operating system in regard to: **(2)** 6 1) Process management 3) Main Memory management 2) File management 4) Secondary storage management **Q.2** Solve Any Two of the following. (This is just a sample instruction) Consider the following data with burst time given in milliseconds: **(3)** 6 **Process Burst Time Priority** P1 10 3 P2 P3 2 3 **P4** 4 **P5** The process has arrived in the order P1, P2, P3, P4, P5. i) Draw Gantt charts for the execution of these processes using FCFS, SJF, non-preemptive Priority and RR (quantum=2) scheduling. ii) What is turnaround time and waiting time of each process for each of the scheduling algorithm. B) What are co-operating processes? Describe the mechanism of inter process **(2)** 6 communication using shared memory and massage passing Suppose the following jobs arrive for processing at the times indicated, C) **(3)** 6

each job will run the listed amount of time.

Job	arrival time	burst time
1	0.0	8
2	0.4	4
3	1.0	1

- i) Give a Gantt chart illustrating the execution of these jobs using the non-preemptive FCFS and SJF scheduling algorithms.
- ii) What is turnaround time and waiting time of each job for the above algorithms?

Q. 3 Solve Any Two of the following. (This is just a sample instruction)

A) Examine banker's algorithm after applying to the example given below. A system has 5 processes, P1, P2, P3, P4 and P5. There are 3 types of resources R1, R2 and R3. there are 10 instances of R1, 5 instances of R2 and 7 instances of R3. At time T0, the situation is as follows;

6

(2)

6

6

Process	Allocation	Maximum		
	R1 R2 R3	R1 R2 R3		
P1	0 1 0	7 5 3		
P2	2 0 0	3 2 2		
P3	3 0 2	9 0 2		
P4	2 1 1	2 2 2		
P5	0 0 2	4 3 3		

Is the system in a safe state at time T0?

Suppose now at time T1, process P2 requests one additional instance of resource type R1, is the system in a safe state?

- **B)** Why is deadlock state more critical than starvation? Describe resource allocation graph with a deadlock, also explain resource allocation graph with a cycle but no deadlock.
- C) Describe the bounded-buffer Producer-Consumer problem and give a solution for the same using semaphores. Write the structure of Producer and Consumer processes.

Q.4 Solve Any Two of the following. (This is just a sample instruction)

A) Given memory partitions of 150 K, 250 K, 500 K, 300 K and 600 K (in order) how would each of the first-fit, best-fit and worst-fit algorithms allocate processes of 212K, 417K, 112K and 426 K (in order)? Which algorithm makes the most efficient use of memory?

B)	Consider	the	following	page	reference	string	(3)	6
	1,2,3,4,2,1,5	,6,2,1,2,3,	7,6,3,2,1,2,3,6			3, 73 % B. 14.		
	Find out the	Find out the number of page faults if there are 3 page frames, using the						
	following pa							
C)	Describe the	Describe the action taken by the operating system when a page fault occurs					(2)	6
	with neat dia	igram.						
Q. 5	Solve Any T	Two of the	e following. (Th	is is just a s	sample instructi	(n)		
A)	Describe the	different	file allocation	methods. A	lso explain the	methods of	(2)	6
	file impleme	entation w	ith merits and de	emerits.				
B)	Suppose that a disk drive has 5000 cylinders, numbered 0 to 4999. the drive					9. the drive	(3)	6
	currently services a request at cylinder 1043, and the previous request was							
	at cylinder 1225. the queue of pending request in FIFO order is 486, 1470,						5,5	
	913, 1774, 9	948, 1509,	1022, 1750, 13	30. Starting	from the curre	nt position,		
	what is the to	otal distan	ce (in cylinders) that the di	isk arm moves t	o satisfy all		
	pending requ	uests, for	each of the follo	owing algor	ithms i) FCFS i	i) SSFT iii)		
	SCAN iv) Lo	OOK v) C	S-SCAN.			\$70°C		
C)	Describe ho	w free-spa	ace managemen	t is implen	nented in file sy	stem. Also	(2)	6
	explain bit n	nap with t	he help of an ex	ample		§ '		

*** End ***